The SR flip-flop has inputs S (Set) and R (Reset), and output Q. The truth table is:
\begin{tabular}{|c|c|c|p{3cm}|}
\hline
S & R & $Q(t+1)$ & Comment
\hline
0 & 0 & $Q(t)$ & No change (Hold)
0 & 1 & 0 & Reset
1 & 0 & 1 & Set
1 & 1 & - & Forbidden
\hline
\end{tabular}
\medskip
Characteristic equation derivation:
For $S=1,R=0 \Rightarrow Q(t+1)=1$
For $S=0,R=1 \Rightarrow Q(t+1)=0$
For $S=0,R=0 \Rightarrow Q(t+1)=Q(t)$
Using K-map with $SR=0$ constraint:
\[ Q(t+1) = S + \overline{R}Q(t) \]
Let's test this:
If S=0, R=0: \(Q(t+1) = 0 + \overline{0}Q(t) = 1 \cdot Q(t) = Q(t)\). (Hold - Correct)
If S=0, R=1: \(Q(t+1) = 0 + \overline{1}Q(t) = 0 \cdot Q(t) = 0\). (Reset - Correct)
If S=1, R=0: \(Q(t+1) = 1 + \overline{0}Q(t) = 1 + 1 \cdot Q(t) = 1\). (Set - Correct)
If S=1, R=1 (forbidden): \(Q(t+1) = 1 + \overline{1}Q(t) = 1 + 0 \cdot Q(t) = 1\). This equation sets Q to 1 for the forbidden state, which is one possible outcome if S dominates R, or it's simplified under \(SR=0\).
Option (d) is \( Q(t+1) = S + \overline{R} Q(t) \). This matches the commonly used characteristic equation under the constraint \(SR=0\).
\[ \boxed{Q(t+1) = S + \overline{R} Q(t)} \]