Concentrated nitric acid is labelled as 75% by mass. The volume in mL of the solution which contains 30 g of nitric acid is:
Given: Density of nitric acid solution is 1.25 g/mL.
Arrange the following in increasing order of solubility product:
\[ {Ca(OH)}_2, {AgBr}, {PbS}, {HgS} \]
Match List - I with List - II.
List - I (Saccharides) List - II (Glycosidic linkages found)
(A) Sucrose (I) \( \alpha 1 - 4 \)
(B) Maltose (II) \( \alpha 1 - 4 \) and \( \alpha 1 - 6 \)
(C) Lactose (III) \( \alpha 1 - \beta 2 \)
(D) Amylopectin (IV) \( \beta 1 - 4 \)
Choose the correct answer from the options given below:
Match List - I with List - II.
List - I (Complex) | List - II (Hybridisation) |
---|---|
(A) \([\text{CoF}_6]^{3-}\) | (I) \( d^2 sp^3 \) |
(B) \([\text{NiCl}_4]^{2-}\) | (II) \( sp^3 \) |
(C) \([\text{Co(NH}_3)_6]^{3+}\) | (III) \( sp^3 d^2 \) |
(D) \([\text{Ni(CN}_4]^{2-}\) | (IV) \( dsp^2 \) |
Choose the correct answer from the options given below:
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is