Step 1: Let events be defined.
Let \(A,B,C\) be the events of selecting box \(A,B,C\) respectively.
Let \(D\) be the event that the screw is defective.
Since box is selected at random:
\[
P(A)=P(B)=P(C)=\frac{1}{3}
\]
Given defective probabilities:
\[
P(D|A)=\frac{1}{5},\quad P(D|B)=\frac{1}{6},\quad P(D|C)=\frac{1}{7}
\]
Step 2: Apply Bayes’ theorem.
\[
P(A|D)=\frac{P(A)P(D|A)}{P(A)P(D|A)+P(B)P(D|B)+P(C)P(D|C)}
\]
Step 3: Substitute values.
\[
P(A|D)=\frac{\frac{1}{3}\cdot\frac{1}{5}}{\frac{1}{3}\cdot\frac{1}{5}+\frac{1}{3}\cdot\frac{1}{6}+\frac{1}{3}\cdot\frac{1}{7}}
\]
Cancel \(\frac{1}{3}\):
\[
P(A|D)=\frac{\frac{1}{5}}{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}}
\]
Step 4: Simplify denominator.
LCM of \(5,6,7=210\).
\[
\frac{1}{5}=\frac{42}{210},\quad
\frac{1}{6}=\frac{35}{210},\quad
\frac{1}{7}=\frac{30}{210}
\]
\[
\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{42+35+30}{210}=\frac{107}{210}
\]
Step 5: Final probability.
\[
P(A|D)=\frac{42/210}{107/210}=\frac{42}{107}
\]
Final Answer:
\[
\boxed{\frac{42}{107}}
\]