Step 1: Compare with standard equation of sphere.
Standard form:
\[
x^2+y^2+z^2+2ux+2vy+2wz+d=0
\]
Center: \((-u,-v,-w)\)
Radius: \(\sqrt{u^2+v^2+w^2-d}\)
Step 2: Identify coefficients.
Given:
\[
x^2+y^2+z^2-3x-4z+1=0
\]
So:
\[
2u=-3 \Rightarrow u=-\frac{3}{2}
\]
\[
2v=0 \Rightarrow v=0
\]
\[
2w=-4 \Rightarrow w=-2
\]
\[
d=1
\]
Step 3: Find center.
\[
(-u,-v,-w)=\left(\frac{3}{2},0,2\right)
\]
Step 4: Find radius.
\[
R=\sqrt{u^2+v^2+w^2-d}
\]
\[
=\sqrt{\left(\frac{3}{2}\right)^2 + 0^2 + (2)^2 - 1}
=\sqrt{\frac{9}{4}+4-1}
=\sqrt{\frac{9}{4}+3}
=\sqrt{\frac{21}{4}}
=\frac{\sqrt{21}}{2}
\]
Final Answer:
\[
\boxed{\left(\frac{3}{2},0,2\right),\frac{\sqrt{21}}{2}}
\]