Step 1: Total Binding Energy
To find the total binding energy, we use the following equation:
\[
E_{\text{total}} = \text{Binding energy per nucleon} \times \text{Number of nucleons}
\]
Substitute the given values:
\[
E_{\text{total}} = 7 \, \text{MeV} \times 4 = 28 \, \text{MeV}
\]
Thus, the total binding energy of the \(\alpha\)-particle is \(28 \, \text{MeV}\). This is the energy required to separate all the nucleons (2 protons and 2 neutrons) from the nucleus. The binding energy is a measure of the stability of the nucleus, and a higher binding energy per nucleon indicates a more stable nucleus.
Define the mass defect and binding energy of nucleus.
Mention the events related to the following historical dates:
\[\begin{array}{rl} \bullet & 321 \,\text{B.C.} \\ \bullet & 1829 \,\text{A.D.} \\ \bullet & 973 \,\text{A.D.} \\ \bullet & 1336 \,\text{A.D.} \\ \bullet & 1605 \,\text{A.D.} \\ \bullet & 1875 \,\text{A.D.} \\ \bullet & 1885 \,\text{A.D.} \\ \bullet & 1907 \,\text{A.D.} \\ \bullet & 1942 \,\text{A.D.} \\ \bullet & 1935 \,\text{A.D.} \end{array}\]