Step 1 (Recall the definition of volume for a cylinder).
For any right circular cylinder, the volume is the product of the base area and the vertical height:
\[
V \;=\; \text{(area of circular base)} \times \text{(height)}.
\]
This is the same as \(V=\pi r^2 h\), but if the base area is already given, we can use it directly.
Method 1 — Using the given base area directly.
Step 2 (Substitute values with units).
Given base area \(A_b = 154\ \text{cm}^2\) and height \(h=5\ \text{cm}\):
\[
V \;=\; A_b \times h \;=\; 154\ \text{cm}^2 \times 5\ \text{cm}.
\]
Step 3 (Multiply and track units).
\[
V \;=\; 770\ (\text{cm}^2\cdot \text{cm}) \;=\; 770\ \text{cm}^3.
\]
The unit \(\text{cm}^2 \times \text{cm} \text{cm}^3\) confirms we have a volume.
Method 2 — Cross-check by recovering the radius.
Step 4 (Relate base area to radius).
For a circle, \(A_b=\pi r^2\). With \(A_b=154\ \text{cm}^2\) and taking \(\pi=\dfrac{22}{7}\) (a standard school value):
\[
\pi r^2=154 r^2=\frac{154}{\pi}=\frac{154}{22/7}=154\cdot\frac{7}{22}.
\]
Step 5 (Simplify exactly).
Note that \(154=22\times 7\). Hence
\[
r^2=\frac{22\cdot 7\cdot 7}{22}=49 r=7\ \text{cm}.
\]
Step 6 (Compute volume via } \(\pi r^2 h\){).
\[
V=\pi r^2 h=\frac{22}{7}\times 7^2 \times 5=\frac{22}{7}\times 49 \times 5
=\frac{22}{7}\times 245=22\times 35=770\ \text{cm}^3.
\]
This exactly matches Method 1.
Step 7 (Sanity/size check).
A base of \(154\ \text{cm}^2\) is about a circle of radius \(7\ \text{cm}\). A height of \(5\ \text{cm}\) is modest, so a volume slightly under \(1000\ \text{cm}^3\) (one liter) is reasonable. Our \(770\ \text{cm}^3\) fits this intuition.
\[
{770\ \text{cm}^3}
\]