Let \(a,b,c,d\) be the number of students in A, B, C and D respectively
Given, average marks of the students in section A, B, C and D of the school = 60
Then \(\frac{45a+50b+72c+80d}{a+b+c+d}=60\%\)
\(=45a+50b+72c+80d=60a+60b+60c+60d\)
\(=12c+20d=15a+10b..............(1)\)
Average marks of the students of sections A and B together is \(48\%\)
\(=\frac{45a+50b}{a+b}=48\%\)
\(=454a+50b=48a+48b\)
\(=3a=2b\) (or) \(15a=10b.................(2)\)
Average marks of the students of sections B and C together is \(60\%\)
\(=\frac{72c+80d}{c+d}=60\%\)
\(=\$\$72c+80d=60c+60d\)
\(=12c=12d..............(3)\)
Substitute equations (2) and (3) in equation (1)
⇒ \(20d+20d=15a+15a\)
⇒ \(40d=30a\)
⇒ \(a:d=4:3\)
Hence, option B is the correct answer.The correct option is (B): 4 : 3