6.5
13
The curve \(y=|x-2|\) is split into two linear parts:
We calculate the area under the curve from \(x = 0\) to \(x = 5\), divided into two regions:
Region 1: \(x \in [0, 2]\) The area under \(y = 2 - x\) is:
\(Area_1 = \int_0^2 (2 - x) dx.\)
\(Area_1 = \left[ 2x - \frac{x^2}{2} \right]_0^2 = \left( 2(2) - \frac{2^2}{2} \right) - \left( 2(0) - \frac{0^2}{2} \right).\)
\(Area_1 = (4 - 2) - 0 = 2.\)
Region 2: \(x \in [2, 5]\) The area under \(y = x - 2\) is:
\(Area_2 = \int_2^5 (x - 2) dx.\)
\(Area_2 = \left[ \frac{x^2}{2} - 2x \right]_2^5 = \left( \frac{5^2}{2} - 2(5) \right) - \left( \frac{2^2}{2} - 2(2) \right).\)
\(Area_2 = \left( \frac{25}{2} - 10 \right) - \left( \frac{4}{2} - 4 \right).\)
\(Area_2 = \left( \frac{25}{2} - \frac{20}{2} \right) - \left( \frac{4}{2} - \frac{8}{2} \right) = \frac{5}{2} + \frac{4}{2} = \frac{9}{2}.\)
Total Area:
\(Total Area = Area_1 + Area_2 = 2 + \frac{9}{2} = \frac{4}{2} + \frac{9}{2} = \frac{13}{2} = 6.5.\)
Thus, the area bounded by the curve is 6.5 square units.
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |