Step 1: Solve equations for direction ratios.
Given:
\[
l+m+n=0 \Rightarrow n=-(l+m)
\]
Second equation:
\[
l^2+m^2-n^2=0
\Rightarrow l^2+m^2=(l+m)^2
\]
\[
l^2+m^2=l^2+m^2+2lm
\Rightarrow 2lm=0
\Rightarrow lm=0
\]
Step 2: Cases.
Either \(l=0\) or \(m=0\).
Case 1: \(l=0\). Then \(n=-(0+m)=-m\).
Direction ratios \((0,1,-1)\).
Case 2: \(m=0\). Then \(n=-(l+0)=-l\).
Direction ratios \((1,0,-1)\).
Step 3: Find angle between these two lines.
Let vectors:
\[
\vec{a}=(0,1,-1),\quad \vec{b}=(1,0,-1)
\]
Dot product:
\[
\vec{a}\cdot\vec{b}=0\cdot 1+1\cdot 0+(-1)(-1)=1
\]
Magnitudes:
\[
|\vec{a}|=\sqrt{0^2+1^2+(-1)^2}=\sqrt{2}
\]
\[
|\vec{b}|=\sqrt{1^2+0^2+(-1)^2}=\sqrt{2}
\]
\[
\cos\theta = \frac{1}{2}
\Rightarrow \theta=\frac{\pi}{3}
\]
Final Answer:
\[
\boxed{\frac{\pi}{3}}
\]