To find the angle between the lines given by their vector equations, we utilize the formula for the cosine of the angle \(\theta\) between two vectors \(\vec{a}\) and \(\vec{b}\), which is given by:
\[\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\]
For the first line, the vector direction is \(\vec{a} = 4\hat{i} + 6\hat{j} + 12\hat{k}\).
For the second line, the vector direction is \(\vec{b} = 5\hat{i} + 8\hat{j} - 4\hat{k}\).
We first find the dot product \(\vec{a} \cdot \vec{b}\):
\(\vec{a} \cdot \vec{b} = (4)(5) + (6)(8) + (12)(-4) = 20 + 48 - 48 = 20\)
Next, we calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\):
\(|\vec{a}| = \sqrt{4^2 + 6^2 + 12^2} = \sqrt{16 + 36 + 144} = \sqrt{196} = 14\)
\(|\vec{b}| = \sqrt{5^2 + 8^2 + (-4)^2} = \sqrt{25 + 64 + 16} = \sqrt{105}\)
Substitute these values into the cosine formula:
\(\cos\theta = \frac{20}{14 \cdot \sqrt{105}}\)
\(\cos\theta = \frac{20}{14\sqrt{105}}\)
Simplifying the fraction:\(\cos\theta = \frac{10}{7\sqrt{105}}\)
Thus, the angle \(\theta\) is given by:
\(\theta = \cos^{-1}\left(\frac{10}{\sqrt{7}\sqrt{105}}\right)\)
The angle between two lines is determined by the angle between their direction vectors. For the given lines, the direction vectors are:
\(\vec{d_1} = 4\hat{i} + 6\hat{j} + 12\hat{k}\), \(\vec{d_2} = 5\hat{i} + 8\hat{j} - 4\hat{k}\).
The formula for the cosine of the angle between two vectors is:
\[ \cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|}. \]
Compute the dot product \(\vec{d_1} \cdot \vec{d_2}\):
\[ \vec{d_1} \cdot \vec{d_2} = (4)(5) + (6)(8) + (12)(-4). \]
\[ \vec{d_1} \cdot \vec{d_2} = 20 + 48 - 48 = 20. \]
Compute the magnitudes of \(\vec{d_1}\) and \(\vec{d_2}\). The magnitude of \(\vec{d_1}\) is:
\[ \|\vec{d_1}\| = \sqrt{(4)^2 + (6)^2 + (12)^2} = \sqrt{16 + 36 + 144} = \sqrt{196} = 14. \]
The magnitude of \(\vec{d_2}\) is:
\[ \|\vec{d_2}\| = \sqrt{(5)^2 + (8)^2 + (-4)^2} = \sqrt{25 + 64 + 16} = \sqrt{105}. \]
Substitute into the cosine formula:
\[ \cos \theta = \frac{\vec{d_1} \times \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|}. \]
\[ \cos \theta = \frac{20}{14 \times \sqrt{105}} = \frac{10}{\sqrt{7} \times \sqrt{105}}. \]
Thus, the angle between the lines is:
\[ \theta = \cos^{-1} \left( \frac{10}{\sqrt{7} \sqrt{105}} \right). \]