The angle between two lines is determined by the angle between their direction vectors. For the given lines, the direction vectors are:
\(\vec{d_1} = 4\hat{i} + 6\hat{j} + 12\hat{k}\), \(\vec{d_2} = 5\hat{i} + 8\hat{j} - 4\hat{k}\).
The formula for the cosine of the angle between two vectors is:
\[ \cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|}. \]
Compute the dot product \(\vec{d_1} \cdot \vec{d_2}\):
\[ \vec{d_1} \cdot \vec{d_2} = (4)(5) + (6)(8) + (12)(-4). \]
\[ \vec{d_1} \cdot \vec{d_2} = 20 + 48 - 48 = 20. \]
Compute the magnitudes of \(\vec{d_1}\) and \(\vec{d_2}\). The magnitude of \(\vec{d_1}\) is:
\[ \|\vec{d_1}\| = \sqrt{(4)^2 + (6)^2 + (12)^2} = \sqrt{16 + 36 + 144} = \sqrt{196} = 14. \]
The magnitude of \(\vec{d_2}\) is:
\[ \|\vec{d_2}\| = \sqrt{(5)^2 + (8)^2 + (-4)^2} = \sqrt{25 + 64 + 16} = \sqrt{105}. \]
Substitute into the cosine formula:
\[ \cos \theta = \frac{\vec{d_1} \times \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|}. \]
\[ \cos \theta = \frac{20}{14 \times \sqrt{105}} = \frac{10}{\sqrt{7} \times \sqrt{105}}. \]
Thus, the angle between the lines is:
\[ \theta = \cos^{-1} \left( \frac{10}{\sqrt{7} \sqrt{105}} \right). \]