For a real-valued signal \(x(t)\), the exponential Fourier series coefficients \(C_n\) satisfy the conjugate symmetry property: \(C_{-n} = C_n^*\), where \(C_n^*\) is the complex conjugate of \(C_n\).
Let \(C_n = |C_n|e^{j\theta_n}\), where \(|C_n|\) is the amplitude and \(\theta_n = \angle C_n\) is the phase.
Then \(C_n^* = |C_n|e^{-j\theta_n}\).
Since \(C_{-n} = C_n^*\):
Amplitude spectrum: \(|C_{-n}| = |C_n^*| = |C_n|\). This means the amplitude spectrum is an even function (symmetrical about the vertical axis \(n=0\)).
Phase spectrum: \(\angle C_{-n} = \angle C_n^* = -\theta_n = -\angle C_n\). This means the phase spectrum is an odd function (antisymmetrical about the vertical axis \(n=0\)).
\[ \boxed{\text{Symmetrical, antisymmetrical}} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |