The given temperature is 25°C. We need to convert this to both the Fahrenheit and Kelvin scales.
To convert from Celsius to Fahrenheit, use the formula:
\[ \text{Fahrenheit (°F)} = \left(\frac{9}{5} \times \text{Celsius (°C)}\right) + 32 \] Substituting the given temperature of 25°C: \[ \text{Fahrenheit} = \left(\frac{9}{5} \times 25\right) + 32 = 45 + 32 = 77^\circ\text{F} \]
To convert from Celsius to Kelvin, use the formula:
\[ \text{Kelvin (K)} = \text{Celsius (°C)} + 273.15 \] Substituting the given temperature of 25°C: \[ \text{Kelvin} = 25 + 273.15 = 298.15\text{K} \]
The temperature of 25°C is equivalent to 77°F and 298.15K.
Answer: Option C: 77°F and 298.15K
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).