The given temperature is 25°C. We need to convert this to both the Fahrenheit and Kelvin scales.
To convert from Celsius to Fahrenheit, use the formula:
\[ \text{Fahrenheit (°F)} = \left(\frac{9}{5} \times \text{Celsius (°C)}\right) + 32 \] Substituting the given temperature of 25°C: \[ \text{Fahrenheit} = \left(\frac{9}{5} \times 25\right) + 32 = 45 + 32 = 77^\circ\text{F} \]
To convert from Celsius to Kelvin, use the formula:
\[ \text{Kelvin (K)} = \text{Celsius (°C)} + 273.15 \] Substituting the given temperature of 25°C: \[ \text{Kelvin} = 25 + 273.15 = 298.15\text{K} \]
The temperature of 25°C is equivalent to 77°F and 298.15K.
Answer: Option C: 77°F and 298.15K
To convert Celsius to Fahrenheit, use the formula: \[ F = \frac{9}{5} \times C + 32 \] Substitute \( C = 25^\circ \text{C} \): \[ F = \frac{9}{5} \times 25 + 32 = 45 + 32 = 77^\circ \text{F} \] To convert Celsius to Kelvin, use the formula: \[ K = C + 273.15 \] Substitute \( C = 25^\circ \text{C} \): \[ K = 25 + 273.15 = 298.15 \, \text{K} \] Thus, the temperature of 25°C in Fahrenheit and Kelvin is 77°F and 298.15 K, respectively.
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :