Step 1: Define events and probabilities.
\( P(F) = 0.10, P(F') = 0.90, P(C|F) = 0.95, P(C|F') = 0.45 \)
Step 2: Use Bayes' Theorem: \( P(F|C) = \frac{P(C|F) P(F){P(C)} \).}
Step 3: Calculate \( P(C) \) using total probability.
\( P(C) = P(C|F) P(F) + P(C|F') P(F') = (0.95)(0.10) + (0.45)(0.90) = 0.095 + 0.405 = 0.50 \)
Step 4: Calculate \( P(F|C) \).
\( P(F|C) = \frac{(0.95)(0.10)}{0.50} = \frac{0.095}{0.50} = 0.19 \)