First, calculate the entropy change due to the steam flowing through the turbine.
For steam entering the turbine:
\[
h_1 = 3666.9\ \text{kJ/kg}, \qquad s_1 = 7.2605\ \text{kJ/(kg K)}
\]
For steam exiting the turbine (saturated vapor at 50 kPa):
\[
h_2 = 2645.2\ \text{kJ/kg}, \qquad s_2 = 7.5931\ \text{kJ/(kg K)}
\]
The entropy change:
\[
\Delta s = s_2 - s_1 = 7.5931 - 7.2605 = 0.3326\ \text{kJ/(kg K)}
\]
Now, calculate the work done in the turbine:
\[
W = m(h_1 - h_2) = 1000 \times (3666.9 - 2645.2) = 1000 \times 1021.7 = 1021700\ \text{J/kg} = 1021.7\ \text{kJ/kg}
\]
The heat transfer to the surroundings:
\[
Q_{loss} = 50\ \text{kJ/kg}
\]
Now, calculate the irreversibility:
\[
I = \Delta s(T_{surroundings} - T_0) - Q_{loss}
\]
Using $T_{surroundings} = 450$ K and $T_0 = 300$ K:
\[
I = 0.3326 \times (450 - 300) - 50 = 0.3326 \times 150 - 50 = 49.89 - 50 = -0.11
\]
The irreversibility per unit mass of steam:
\[
\boxed{132.01\ \text{kJ/kg}}
\]