Entropy change per unit mass of steam (before and after):
\[
\Delta s = s_{\text{exit}} - s_{\text{inlet}}
\]
From the given data:
\[
s_{\text{inlet}} = 6.9028\ \text{kJ/(kg K)} \quad \text{(at 600°C, 10 MPa)}
\]
\[
s_{\text{exit}} = 8.1501\ \text{kJ/(kg K)} \quad \text{(at 10 kPa, saturated vapor)}
\]
Thus, the change in entropy per unit mass is:
\[
\Delta s = 8.1501 - 6.9028 = 1.2473\ \text{kJ/(kg K)}
\]
The rate of entropy generation (\( \dot{S}_{gen} \)) is given by:
\[
\dot{S}_{gen} = \dot{m} \Delta s
\]
where \( \dot{m} = 16\ \text{kg/s} \) is the mass flow rate.
Substitute values:
\[
\dot{S}_{gen} = 16 \times 1.2473 = 19.96\ \text{kW/K}
\]
Thus, the rate of entropy generation in the turbine is approximately:
\[
\dot{S}_{gen} = 20.00\ \text{kW/K}
\]
Rounded to 2 decimals:
\[
\dot{S}_{gen} = 20.00\ \text{kW/K}
\]