(i)
$\because$ In equilateral triangle, $tan60^{\circ}=\sqrt{3}=$ Slope of the line, so with integral coordinates as vertices, the triangle cannot be equilateral.
(ii)
Given points are $A(3, -4)$, $B(-2,6)$, $P(-3,6)$ and $Q(9, -18)$.
Slope of $AB=\frac{6+4}{-2-3}=-2$,
Slope of $PQ=\frac{-18-6}{9+3}=-2$
Since slope of $AB =$ slope of $PQ$
Therefore, line $AB$ is parallel to line $PQ$.
(iii)
Given equation of lines are
$y=\left(2-\sqrt{3}\right)\left(x+5\right)\quad\ldots\left(i\right)$
and $y=\left(2+\sqrt{3}\right)\left(x-7\right)\quad\ldots\left(ii\right)$
$\therefore$ Slope of $\left(i\right), m_{1}=\left(2-\sqrt{3}\right)$
Slope of $\left(ii\right), m_{2}=\left(2+\sqrt{3}\right)$
If $\theta$ be the angle between the lines $\left(i\right)$ and $\left(ii\right)$, then
$tan\,\theta=\left|\frac{m_{1}-m_{2}}{1+m_{1}\,m_{2}}\right|$
$\Rightarrow tan\,\theta=\left|\frac{\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)}{1+\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\right|$
$\Rightarrow tan\,\theta =\left|\frac{-2\sqrt{3}}{1+4-3}\right|$
$\Rightarrow tan\,\theta =\sqrt{3}$
$\Rightarrow tan\,\theta =tan\left(\pi/3\right)$
$\Rightarrow \theta=\pi/3=60^{\circ}$
For obtuse angle, $\pi-\left(\pi/3\right)=2\pi/3=120^{\circ}$
Hence, the angle between the lines are $60^{\circ}$ or $120^{\circ}$.
(iv)
We have, $A(-2,1)$, $B(0,5)$ and $C(-1, 2)$
Slope of $AB=\frac{5-1}{0+2}=2$,
Slope of $BC=\frac{2-5}{-1-0}=3$,
Slope of $AC=\frac{2-1}{-1+2}=1$
Since, the slopes are different.
Therefore, $A$, $B$ and $C$ are not collinear.