Solve the differential equation \(ye^{\frac xy}dx=(xe^{\frac xy}+y^2)dy, \ \ (y≠0)\)
\(ye^{\frac xy}dx=(xe^{\frac xy}+y^2)dy, \ \ (y≠0)\)
\(⇒ye^{\frac xy} \frac {dx}{dy}=xe^{\frac xy}+y^2\)
\(⇒e^{\frac xy}[y.\frac {dx}{dy}-x]=y^2\)
\(⇒e^{\frac xy}.\frac {[y.\frac {dx}{dy}-x]}{y^2}=1\) ...(1)
\(Let\ e^{\frac xy}=z.\)
Differentiating it with respect to y,we get:
\(\frac {d}{dy}(e^{\frac xy})=\frac {dz}{dy}\)
\(⇒e^{\frac xy}.\frac {d}{dy}(\frac xy)=\frac {dz}{dy}\)
\(⇒e^{\frac xy}.[\frac {y.\frac {dx}{dy}-x}{y^2}]=\frac {dz}{dy}\) ...(2)
From equation (1) and equation (2), we get:
\(\frac {dz}{dy}=1\)
\(⇒dz=dy\)
Integrating both sides, we get:
\(z=y+C\)
\(⇒e^{\frac xy}=y+C\)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.