Rewrite the equation:
\[
\frac{dy}{dx} = e^x \cdot e^y.
\]
Separate variables:
\[
\frac{dy}{e^y} = e^x \, dx.
\]
Rewrite as:
\[
e^{-y} dy = e^x dx.
\]
Integrate both sides:
\[
\int e^{-y} dy = \int e^x dx.
\]
Calculate integrals:
\[
- e^{-y} = e^x + C.
\]
Rearranged,
\[
e^{-y} = - e^x + C',
\]
where \(C' = -C\).
Or,
\[
\boxed{
e^{-y} + e^x = C.
}
\]