Solve \(tan^{-1}\frac {1-x}{1+x} = \frac {1}{2}\ tan^{-1}x,(x>0)\)
tan-1\(\frac {1-x}{1+x}\) = \(\frac12\) tan-1x
tan-11 - tan-1x = \(\frac 12\) tan-1x
\(\implies\)\(\frac {\pi}{4}\) = \(\frac 32\) tan-1x
\(\implies\)tan-1x = \(\frac {\pi}{6}\)
\(\implies\)x = tan-1\(\frac {\pi}{6}\)
So, x = \(\frac {1}{\sqrt 3}\)
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: