Question:

Solve: \(sin(tan^{-1}x)=|x|<1\) is equal to

Updated On: Aug 29, 2023
  • \(\frac {x}{\sqrt{1-x^2}}\)

  • \(\frac {1}{\sqrt{1-x^2}}\)

  • \(\frac {x}{\sqrt{1+x^2}}\)

  • \(\frac {x}{\sqrt{1+x^2}}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let tan−1x = y. 
Then, tan y = x\(\implies\)sin y = \(\frac {x}{\sqrt{1+x^2}}\) 
y = sin-1\(\frac {x}{\sqrt{1+x^2}}\)\(\implies\)tan-1x = sin-1\(\frac {x}{\sqrt{1+x^2}}\)
Therefore, sin(tan-1x) = sin(sin-1\(\frac {x}{\sqrt{1+x^2}}\)) =\(\frac {x}{\sqrt{1+x^2}}\)

Hence, the correct answer is (D): \(\frac {x}{\sqrt{1+x^2}}\)

Was this answer helpful?
0
0