Solve: \(sin(tan^{-1}x)=|x|<1\) is equal to
\(\frac {x}{\sqrt{1-x^2}}\)
\(\frac {1}{\sqrt{1-x^2}}\)
\(\frac {x}{\sqrt{1+x^2}}\)
\(\frac {x}{\sqrt{1+x^2}}\)
Let tan−1x = y.
Then, tan y = x\(\implies\)sin y = \(\frac {x}{\sqrt{1+x^2}}\)
y = sin-1\(\frac {x}{\sqrt{1+x^2}}\)\(\implies\)tan-1x = sin-1\(\frac {x}{\sqrt{1+x^2}}\)
Therefore, sin(tan-1x) = sin(sin-1\(\frac {x}{\sqrt{1+x^2}}\)) =\(\frac {x}{\sqrt{1+x^2}}\)
Hence, the correct answer is (D): \(\frac {x}{\sqrt{1+x^2}}\)
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: