Solve \(sin^{-1}(1-x)-2sin^{-1}x=\frac {\pi}{2}\), then x is equal to
\(0, \frac 12\)
\(1,\frac 12\)
\(0\)
\(\frac 12\)
sin-1(1-x) - 2sin-1x = \(\frac {\pi}{2}\)
\(\implies\)-2 sin-1x = \(\frac {\pi}{2}\) - sin-1(1-x)
\(\implies\)-2 sin-1x = cos-1(1-x) .………. (1)
Let sin-1x = θ\(\implies\)sinθ = x\(\implies\)cosθ = \(\sqrt {1-x^2}\).
θ = cos-1\((\sqrt {1-x^2})\)
Therefore, from equation (1), we have;
-2 cos-1\((\sqrt {1-x^2})\) = cos-1(1-x)
Put x = sin y. Then, we have:
-2 cos-1\((\sqrt {1-sin^2 y})\) = cos-1(1-sin y)
\(\implies\)-2 cos-1(cos y) = cos-1(1-sin y)
\(\implies\)-2y = cos-1(1-sin y)
\(\implies\)1-siny = cos(-2y) = cos 2y
\(\implies\)1-sin y = 1-2sin2y
\(\implies\)2sin2y - sin y = 0
\(\implies\)sin y (2 sin y-1) = 0 siny = 0 or \(\frac 12\)
therefore x = 0 or \(\frac 12\)
But, when x = \(\frac 12\) , it can be observed that:
L.H.S = sin-1(1-\(\frac 12\)) - 2 sin-1 \(\frac 12\)
= sin-1\((\frac 12)\)-2 sin-1\((\frac 12)\)
= - sin-1\(\frac 12\)
= \(-\frac {\pi}{6}\) ≠ \(-\frac {\pi}{2}\)
≠ R.H.S
so x = \(\frac 12\) is not the solution of the given equation. Thus, x = 0.
Hence, the correct answer is (C): \(0\)