The solubility of MX2–type electrolytes is 0.5 × 10–4 Mole/lit. then find out the Ksp of electrolytes :
5 × 10–12
25 × 10–10
1 × 10–13
5 × 10–13
The correct option is (D) : 5 × 10–13
An electrolyte MX2 undergoes dissociation as follows :
MX2\(\rightleftharpoons\)M+2+2X− Concentration MX2 M+2 X− Initial concentration 1 0 0 Concentration at Equilibrium 1-s s 2s Thus from the above condition we can say that, Ksp=s×(2s)2=4×(s)3 Here, s (the solubility ) is 0.5×10−4mole/lit. ∴ Ksp =4×(0.5×10−4)3 ∴ Ksp=5×10−13
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $\mathrm{x} \times 10^{-4} \mathrm{M}$. The value of x is _______ (nearest integer).
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
Law of Chemical Equilibrium states that at a constant temperature, the rate of a chemical reaction is directly proportional to the product of the molar concentrations of the reactants each raised to a power equal to the corresponding stoichiometric coefficients as represented by the balanced chemical equation.
Let us consider a general reversible reaction;
A+B ↔ C+D
After some time, there is a reduction in reactants A and B and an accumulation of the products C and D. As a result, the rate of the forward reaction decreases and that of backward reaction increases.
Eventually, the two reactions occur at the same rate and a state of equilibrium is attained.
By applying the Law of Mass Action;
The rate of forward reaction;
Rf = Kf [A]a [B]b
The rate of backward reaction;
Rb = Kb [C]c [D]d
Where,
[A], [B], [C] and [D] are the concentrations of A, B, C and D at equilibrium respectively.
a, b, c, and d are the stoichiometric coefficients of A, B, C and D respectively.
Kf and Kb are the rate constants of forward and backward reactions.
However, at equilibrium,
Rate of forward reaction = Rate of backward reaction.
Kc is called the equilibrium constant expressed in terms of molar concentrations.
The above equation is known as the equation of Law of Chemical Equilibrium.