Step 1: Rewrite the function \( y = x|x| \)
The function \( y = x|x| \) can be expressed as: \[ y = \begin{cases} -x^2, & x < 0 \\ x^2, & x \geq 0 \end{cases} \]
Step 2: Graph the function
The graph of \( y = x|x| \) is a parabola, concave downwards for \( x < 0 \) and concave upwards for \( x \geq 0 \). (Refer to the attached graph.)
Step 3: Area computation using integration
The area of the shaded region between \( x = -2 \) and \( x = 2 \) is given by: \[ \text{Area} = \int_{-2}^{2} |y| \, dx = 2 \int_{0}^{2} x^2 \, dx \]
Step 4: Evaluate the integral
\[ \int_{0}^{2} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{2} = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} \] Thus, the total area is: \[ \text{Area} = 2 \cdot \frac{8}{3} = \frac{16}{3} \]
Step 5: Final result
The area bounded by the curve \( y = x|x| \), the X-axis, and the ordinates \( x = -2 \) and \( x = 2 \) is \( \frac{16}{3} \).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
In number theory, it is often important to find factors of an integer \( N \). The number \( N \) has two trivial factors, namely 1 and \( N \). Any other factor, if it exists, is called a non-trivial factor of \( N \). Naresh has plotted a graph of some constraints (linear inequations) with points \( A(0, 50) \), \( B(20, 40) \), \( C(50, 100) \), \( D(0, 200) \), and \( E(100, 0) \). This graph is constructed using three non-trivial constraints and two trivial constraints. One of the non-trivial constraints is \( x + 2y \geq 100 \).
Based on the above information, answer the following questions:
On her birthday, Prema decides to donate some money to children of an orphanage home.
If there are 8 children less, everyone gets ₹ 10 more. However, if there are 16 children more, everyone gets ₹ 10 less. Let the number of children in the orphanage home be \( x \) and the amount to be donated to each child be \( y \).
Based on the above information, answer the following questions:
Let \( X \) denote the number of hours a Class 12 student studies during a randomly selected school day. The probability that \( X \) can take the values \( x_i \), for an unknown constant \( k \):
\[ P(X = x_i) = \begin{cases} 0.1, & {if } x_i = 0, \\ kx_i, & {if } x_i = 1 { or } 2, \\ k(5 - x_i), & {if } x_i = 3 { or } 4. \end{cases} \]The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: