Step 1: Rewrite the function \( y = x|x| \)
The function \( y = x|x| \) can be expressed as: \[ y = \begin{cases} -x^2, & x < 0 \\ x^2, & x \geq 0 \end{cases} \]
Step 2: Graph the function
The graph of \( y = x|x| \) is a parabola, concave downwards for \( x < 0 \) and concave upwards for \( x \geq 0 \). (Refer to the attached graph.)
Step 3: Area computation using integration
The area of the shaded region between \( x = -2 \) and \( x = 2 \) is given by: \[ \text{Area} = \int_{-2}^{2} |y| \, dx = 2 \int_{0}^{2} x^2 \, dx \]
Step 4: Evaluate the integral
\[ \int_{0}^{2} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{2} = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} \] Thus, the total area is: \[ \text{Area} = 2 \cdot \frac{8}{3} = \frac{16}{3} \]
Step 5: Final result
The area bounded by the curve \( y = x|x| \), the X-axis, and the ordinates \( x = -2 \) and \( x = 2 \) is \( \frac{16}{3} \).
Show that \( R \) is an equivalence relation. Also, write the equivalence class \([2]\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
In today’s fast-paced world, fitness apps have become a popular tool for tracking and improving health. There are many youngsters who use these fitness apps blindly. As the country moves towards Fit India, it is time to understand the pros and cons of fitness apps. Write an article for your school magazine educating the youth on the pros and cons of fitness apps. You are Kirti/Kirat, a school fitness coach. You may use the following cues along with your own ideas to compose the article.