Question:

Simplify: \[ \sqrt{343x^5} - \sqrt{49x^3} \]

Show Hint

Always factor common terms when simplifying radical expressions.
Updated On: Oct 3, 2025
  • \(7x --\sqrt{}\)
  • \(x7 - \sqrt{}\)
  • \(x7\)
  • \(7x\)
  • \(7x\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Simplify each root.

\(\sqrt{343x^5} = \sqrt{49 \cdot 7 \cdot x^4 \cdot x} = 7x^2\sqrt{7x}\).

\(\sqrt{49x^3} = \sqrt{49 \cdot x^2 \cdot x} = 7x\sqrt{x}\).
Step 2: Subtract.

Expression = \(7x^2\sqrt{7x} - 7x\sqrt{x}\).
Step 3: Factorize.

Take out common factor \(7x\sqrt{x}\): \[ = 7x\sqrt{x}(x\sqrt{7} - 1) \] So it simplifies to the form given in option (1). Final Answer: \[ \boxed{7x\sqrt{x}} \]
Was this answer helpful?
0
0

Questions Asked in GRE exam

View More Questions