Show that the function defined by \(g(x)=x-[x]\) is discontinuous at all integral points.
Here \([x]\) denotes the greatest integer less than or equal to \(x\).
The given function is \(g(x)=x-[x]\)
It is evident that g is defined at all integral points.
Let n be an integer.
Then,\(g(n)=n-[n]\) = \(n-n\) = o
The left-hand limit of f at x=n is,
\(\lim_{x\rightarrow n}g(x)\)=\(\lim_{x\rightarrow n^-}(x-[x])\)=\(\lim_{x\rightarrow n^-}(x)-\lim_{x\rightarrow n^-}[x]\)=\(n(n-1)\)=1
The right-hand limit of f at x=n is,
\(\lim_{x\rightarrow n}g(x)\)=\(\lim_{x\rightarrow n^+}(x-[x])\)=\(\lim_{x\rightarrow n^-}(x)-\lim_{x\rightarrow n^-}[x]\)= \(n-n\) = 0
It is observed that the left and right-hand limits of f at x=n do not coincide.
Therefore,f is not continuous at x=n
Hence,g is discontinuous at all integral points
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}