Let the equation of the line passing through the origin be \(y = m_1x\).
If this line makes an angle of θ with line \(y = mx + c\), then angle θ is given by
\(tanθ=\left|\frac{m_1-m}{1+m_1m}\right|\)
\(⇒tanθ=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right|\)
\(⇒tanθ=±\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)\)
\(⇒tanθ=\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right) \space or\space tanθ=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)\)
Case I:
\(tanθ=\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)\)
\(⇒ tanθ+\frac{y}{x}m\space tanθ=\frac{y}{x}-m\)
\(⇒ m+tanθ=\frac{y}{x}(1-m \space tanθ)\)
\(⇒ \frac{y}{x}=\frac{m+tanθ}{1-m\space tanθ}\)
Case II:
\(tanθ=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}\right)\)
\(⇒ tanθ+\frac{y}{x}m\space tanθ=-\frac{y}{x}+m\)
\(⇒\frac{ y}{x}(1+m\space tanθ)=m-tanθ\)
\(⇒ \frac{y}{x}=\frac{m-tanθ}{1+m\space tanθ}\)
Therefore, the required line is given by \(\frac{y}{x}=\frac{m±tanθ}{1-+m\space tanθ}.\)
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?