Question:

Seeta and Geeta start moving towards each other from two places 200 m apart. After walking 40 m, Geeta turns left and goes 15m, then she turns right and goes 25 m. She then turns right again and comes back to the road on which she had started walking. If Seeta and Geeta walk with the same speed, what is the distance between them now?

Updated On: Jan 13, 2026
  • 40M
  • 35M
  • 55M
  • 65M
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To determine the distance between Seeta and Geeta after they have been walking, we must first track Geeta's movements and then compare them to Seeta's progress. 

  • Initially, Seeta and Geeta are 200 meters apart, with both walking towards each other at the same speed.
  • Geeta moves 40 meters along the road towards Seeta. Since both are moving at the same speed, Seeta has also moved 40 meters, so they are now 120 meters apart.
  • Geeta then turns left and walks 15 meters.
  • Next, Geeta turns right and walks 25 meters. Here, Geeta's path forms a right-angled triangle when calculated because of the perpendicular movements.
  • After walking 40 meters along the road, turning left (90°), walking 15 meters, and then turning right (90°), the path forms a 'L' shape.
  • Finally, Geeta turns right and returns to the original road, completing the perpendicular distance from her path.
  • Given Geeta's perpendicular deviations, her total resolved horizontal movement is back to 40 meters. Hence, Geeta returns to the same parallel line on the initial road. After all these movements, she remains directly 40 meters from her original line of motion.
  • Thus, since both started 200 meters apart and moved towards each other, with their movement parallel in different directions, the remaining distance between them is reduced.
  • Thus, based on their new starting positions on the road, they are now 40 meters apart.

Therefore, the distance between Seeta and Geeta is 40 meters.

Was this answer helpful?
0
1