Solution:
Step 1 (Divide the amount into two parts).
Total amount = \(\rupee 160000\), so each part = \(\frac{160000}{2} = \rupee 80000\).
Step 2 (Interest from compound interest scheme).
Rate \(R = 12%\) p.a., time \(n=2\) years, principal \(P = 80000\).
Amount after 2 years:
\[
A = P(1 + \frac{R}{100})^n = 80000 \left(1 + \frac{12}{100}\right)^2 = 80000 \times (1.12)^2
\]
\[
= 80000 \times 1.2544 = \rupee 100352
\]
Compound interest = \(100352 - 80000 = \rupee 20352\).
Step 3 (Interest from simple interest scheme).
Rate \(= 13%\) p.a., time \(t = 2\) years, principal \(= 80000\):
\[
\text{SI} = \frac{P \times R \times t}{100} = \frac{80000 \times 13 \times 2}{100} = \rupee 20800.
\]
Step 4 (Difference in interest).
\[
\text{Difference} = 20800 - 20352 = \rupee 448
\]
\(\) This matches option C, not A — so correct answer should be \(\rupee 448\).
\[
{\rupee 448 \ \text{(Option (c)}}
\]