The tangent length \( CE \) can be calculated using the formula:
\[
CE = R \cdot \tan \left(\frac{\theta}{2}\right),
\]
where \( R = 200 \, {m} \) (radius of the curve) and \( CE = 92 \, {m} \) (distance from C to E).
Rearranging the formula, we get:
\[
\theta = 2 \cdot \tan^{-1} \left( \frac{92}{200} \right).
\]
Calculating the value:
\[
\theta = 2 \cdot \tan^{-1} \left( 0.46 \right) \approx 49.40^\circ.
\]
Thus, the value of angle \( \theta \) is approximately 49.40°, which corresponds to option (A).