We can use the Arrhenius equation to solve this problem. The two-point form of the Arrhenius equation is:
\[ \ln{\frac{k_2}{k_1}} = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \]
where:
$k_1$ and $k_2$ are the rate constants at temperatures $T_1$ and $T_2$, respectively.
$E_a$ is the activation energy.
R is the ideal gas constant.
Given: $k_1 = 0.04$ s$^{-1}$
$k_2 = 0.14$ s$^{-1}$
$T_1 = 500$ K
$T_2 = 700$ K
R = 8.31 J K$^{-1}$mol$^{-1}$
$\log 3.5 = 0.5441$ which means $\ln 3.5 = 2.303 \times 0.5441 = 1.253$
Plugging the values into the equation:
\(\ln{\frac{0.14}{0.04}} = \frac{E_a}{8.31} \left( \frac{1}{500} - \frac{1}{700} \right)\)
\(\ln{3.5} = \frac{E_a}{8.31} \left( \frac{700 - 500}{500 \times 700} \right)\)
\(1.253 = \frac{E_a}{8.31} \left( \frac{200}{350000} \right)\)
\(1.253 \times 8.31 \times 350000 = E_a\)
\(E_a = \frac{1.253 \times 8.31 \times 350000}{200}\)
\(E_a = 18219 J\)
Reaction Rate Data
Sl. No. | [A] (mol L−1) | [B] (mol L−1) | Initial rate (mol L−1 s−1) |
---|---|---|---|
1 | 0.1 | 0.1 | 0.05 |
2 | 0.2 | 0.1 | 0.10 |
3 | 0.1 | 0.2 | 0.05 |
Sl. No. | [A] (mol L-1) | [B] (mol L-1) | Initial rate (mol L-1 s-1) |
---|---|---|---|
1 | 0.1 | 0.1 | 0.05 |
2 | 0.2 | 0.1 | 0.10 |
3 | 0.1 | 0.2 | 0.05 |
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is: