Step 1: Find the cost price of one apple.
Selling price of one apple = Rs.\ 23, Profit = 15%.
\[
\text{CP of 1 apple} = \frac{SP}{1+0.15} = \frac{23}{1.15} = 20 \ \text{Rs.}
\]
Step 2: Find the cost price of one orange.
Selling price of one orange = Rs.\ 10, Profit = 25%.
\[
\text{CP of 1 orange} = \frac{SP}{1+0.25} = \frac{10}{1.25} = 8 \ \text{Rs.}
\]
Step 3: Let quantities of apples and oranges be \(x\) and \(y\).
Total selling price is given as Rs.\ 653:
\[
23x + 10y = 653
\]
Step 4: Solve for integer solution with \(x>y\).
Modulo check:
\[
23x \equiv 653 \pmod{10} \;\Rightarrow\; 3x \equiv 3 \pmod{10} \;\Rightarrow\; x \equiv 1 \pmod{10}.
\]
So \(x=1,11,21,31,\dots\).
Try \(x=21\):
\[
23(21) = 483 \quad \Rightarrow \quad 653 - 483 = 170 \quad \Rightarrow y=17.
\]
Thus, \(x=21, y=17\). Condition \(x>y\) satisfied.
Step 5: Find total CP and profit.
Total SP = 653.
\[
\text{Total CP} = 21(20) + 17(8) = 420 + 136 = 556.
\]
Profit = \(653 - 556 = 97\).
\[
\text{Profit%} = \frac{97}{556}\times 100 \approx 17.44%.
\]
\[
\boxed{17.4%}
\]