Step 1: Capital ratio (Ram : Shyam) \(=4000:6000=2:3\). Hence, when distributed by capital, Shyam’s share is \(\frac{3}{5}\) of the distributable amount.
For the first \(₹ 200{,}000\): Shyam gets \(\frac{3}{5}\times 200{,}000=120{,}000\).
For the next \(₹ 200{,}000\): Shyam first takes \(20%\) of this slab \(=0.20\times 200{,}000=40{,}000\). The remaining \(₹ 160{,}000\) is shared \(2:3\), so Shyam gets \(\frac{3}{5}\times 160{,}000=96{,}000\).
Thus, up to \(₹ 400{,}000\), Shyam has \(120{,}000+96{,}000+40{,}000=256{,}000\).
Step 2: Let profit beyond \(₹ 400{,}000\) be \(x\). From this excess, Shyam gets
\[
0.35x+\frac{3}{5}\times(0.65x)=0.35x+0.39x=0.74x.
\]
Given Shyam’s total share is \(₹ 367{,}000\):
\[
256{,}000+0.74x=367{,}000 \ \Rightarrow\ 0.74x=111{,}000 \ \Rightarrow\ x=\frac{111{,}000}{0.74}=150{,}000.
\]
Step 3: Therefore, the total profit \(=400{,}000+x=400{,}000+150{,}000=\boxed{₹ 550{,}000}\).