Question:

Prove that. \(\frac{cos(π+x)cos(-x)}{sin(π-x)cos(\frac{π}{2}+x)}=cot^2x\)

Updated On: Oct 19, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(L.H.S=\frac{cos({\pi}+x)cos(-x)}{sin({\pi}-x)cos(\frac{\pi}{2}+x)}\)

\(=\frac{[-cos\,x][cos\,x]}{(sin\,x)(-sin\,x)}\)

\(\frac{-cos^2x}{-sin^2x}\)

\(=cot^2x\)

\(=R.H.S.\)

Was this answer helpful?
0
0

Top Questions on Trigonometric Functions of Sum and Difference of Two Angles

View More Questions