Prove: \(tan^{-1} \frac {63}{16} = sin^{-1} \frac {5}{13} + cos^{-1}\frac 35\)
Let sin-1\(\frac {5}{13}\) = x. then sin x=\(\frac {5}{13}\) \(\implies\)cosx=\(\frac {12}{13}\)
tan x = \(\frac {5}{12}\) \(\implies\)x = tan-1\(\frac {5}{12}\)
sin-1\(\frac {5}{13}\) = tan-1\(\frac {5}{12}\) …..…… (1)
Let cos-1\(\frac {3}{5}\) = y. then cos y=\(\frac {3}{5}\).\(\implies\)sin y = \(\frac 45\).
tan y=\(\frac 43\)\(\implies\)y = tan-1\(\frac 43\).
therefore cos-1\(\frac {3}{5}\) = tan-1\(\frac {4}{3}\) ……….. (2) Using (1) and (2),
we have:
R.H.S = sin-1\(\frac {5}{13}\)+cos-1\(\frac {3}{5}\)
= tan-1\(\frac {5}{12}\) + tan-1\(\frac {4}{3}\)
= tan-1\(\frac {\frac {5}{12}+ \frac 43}{1-\frac {5}{12}. \frac 43 }\) [tan-1 x+tan-1 y]
= tan-1 \(\frac {x+y}{1-xy}\)
= tan-1\(\frac {63}{16}\)
= L.H.S
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: