Prove: \(tan^{-1}\frac 15+tan^{-1}\frac 17+tan^{-1}\frac 13+tan^{-1}\frac 18=\frac {\pi}{4}\)
L.H.S = tan-1\(\frac 15\) + tan-1\(\frac 17\) + tan-1\(\frac 13\) + tan-1\(\frac 18\)
= tan-1\((\frac {\frac 15+ \frac 17}{1-\frac 15. \frac 17})\) + tan-1\((\frac {\frac 13+ \frac 18}{1-\frac 13. \frac 18})\) [tan-1x+tan-1y = tan-1\(\frac {x+y}{1-xy}\)]
= tan-1\(\frac {12}{34}\) + tan-1\(\frac {11}{23}\)
= tan-1\(\frac {6}{17}\) + tan-1\(\frac {11}{23}\)
= tan-1\((\frac {\frac {6}{17}+ \frac {11}{23}}{1-\frac {6}{17}. \frac {11}{23}})\)
= tan-1\(\frac {325}{325}\)
= tan-1(1)
= \(\frac {\pi}{4}\)
= R.H.S
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: