Prove: \(sin^{-1} \frac {8}{17} + sin^{-1} \frac 35=tan^{-1} \frac {77}{36}\)
Let sin-1\(\frac {8}{17}\) = x. Then, sin x = \(\frac {8}{17}\)\(\implies\)cos x =\(\sqrt {1-(\frac {8}{17})^2}\) = \(\sqrt {\frac {225}{289}}\)=\(\frac {15}{17}\).
therefore tan x = \(\frac {8}{15}\) \(\implies\)x = tan-1\(\frac {8}{15}\)
so sin-1\(\frac {8}{17}\) = tan-1\(\frac {8}{15}\) …...…. (1)
Now let sin-1\(\frac {3}{5}\) = y Then sin y=\(\frac {3}{5}\).\(\implies\)cos y=\(\sqrt {1-(\frac {3}{5})^2}\) = \(\sqrt {\frac {16}{25}}\) = \(\frac {4}{5}\).
tan y = \(\frac {3}{4}\), y= tan-1\(\frac {3}{4}\)
therefore sin-1\(\frac {3}{5}\) = tan-1\(\frac {3}{4}\) .……….. (2)
Now, we have:
LHS= sin-1\(\frac {8}{17}\) + sin-1\(\frac {3}{5}\)
=tan-1 \(\frac {8}{15}\) + tan-1\(\frac {3}{4}\) [using(1) and (2)]
=tan-1\(\frac {\frac {8}{15}+ \frac 3 4}{1-\frac {8}{15}. \frac 3 4 }\)
=tan-1\(\frac {77}{36}\)
=RHS
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: