Question:

Prove: \(cos^{-1} \frac45 + cos^{-1} \frac {12}{13} = cos^{-1} \frac {33}{65} \)

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let cos-1\(\frac 45\) = x. Then cosx = \(\frac 45\) = sin x = \(\sqrt {1-(\frac45)^2}\) = \(\frac 35\)
tanx = \(\frac 34\)\(\implies\)x = tan-1\(\frac 34\)
Therefore cos-1\(\frac 45\) = tan-1\(\frac 34\) …..... (1)  
Now, let cos-1\(\frac {12}{13}\) = y.\(\implies\)cos y = \(\frac {12}{13}\) = sin y = \(\frac {5}{13}\)
therefore tan y = \(\frac {5}{12}\)= tan-1 \(\frac {5}{12}\).  
therefore cos-1\(\frac {12}{13}\) = tan-1 \(\frac {5}{12}\)  …….…. (2)  
Let cos-1\(\frac {33}{65}\) = z. cosz = \(\frac {33}{65}\)\(\implies\)sin z = \(\frac {56}{65}\).  
therefore tan z = \(\frac {56}{65}\) \(\implies\)z = tan-1\(\frac {56}{65}\)
therefore cos-1\(\frac {33}{65}\) = tan-1\(\frac {56}{65}\) …….... (3) 
Now, we will prove that:
LHS = cos-1\(\frac 45\) + cos-1 \(\frac {12}{13}\) 
        =tan-1\(\frac 34\) + tan-1\(\frac {5}{12}\)          [using(1) and (2)] 
        =tan-1\(\frac {\frac 34 + \frac {5}{12}}{1- \frac 34 \times \frac {5}{12}}\)    [tan-1x + tan-1y
        =tan-1\(\frac {x+y}{1-xy}\)
        =tan-1\(\frac {36+20}{48-15}\)
        =tan-1\(\frac {56}{33}\)     [by(3)] 
        =RHS

Was this answer helpful?
0
0