Prove: \(cos^{-1} \frac45 + cos^{-1} \frac {12}{13} = cos^{-1} \frac {33}{65} \)
Let cos-1\(\frac 45\) = x. Then cosx = \(\frac 45\) = sin x = \(\sqrt {1-(\frac45)^2}\) = \(\frac 35\).
tanx = \(\frac 34\). \(\implies\)x = tan-1\(\frac 34\)
Therefore cos-1\(\frac 45\) = tan-1\(\frac 34\) …..... (1)
Now, let cos-1\(\frac {12}{13}\) = y.\(\implies\)cos y = \(\frac {12}{13}\) = sin y = \(\frac {5}{13}\).
therefore tan y = \(\frac {5}{12}\)= tan-1 \(\frac {5}{12}\).
therefore cos-1\(\frac {12}{13}\) = tan-1 \(\frac {5}{12}\) …….…. (2)
Let cos-1\(\frac {33}{65}\) = z. cosz = \(\frac {33}{65}\). \(\implies\)sin z = \(\frac {56}{65}\).
therefore tan z = \(\frac {56}{65}\) \(\implies\)z = tan-1\(\frac {56}{65}\)
therefore cos-1\(\frac {33}{65}\) = tan-1\(\frac {56}{65}\) …….... (3)
Now, we will prove that:
LHS = cos-1\(\frac 45\) + cos-1 \(\frac {12}{13}\)
=tan-1\(\frac 34\) + tan-1\(\frac {5}{12}\) [using(1) and (2)]
=tan-1\(\frac {\frac 34 + \frac {5}{12}}{1- \frac 34 \times \frac {5}{12}}\) [tan-1x + tan-1y
=tan-1\(\frac {x+y}{1-xy}\)
=tan-1\(\frac {36+20}{48-15}\)
=tan-1\(\frac {56}{33}\) [by(3)]
=RHS
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: