Prove: \(cos^{-1} \frac {12}{13} + sin^{-1} \frac 35 = sin^{-1} \frac {56}{65}\)
Let sin-1\(\frac 35\) = x. Then, sin x=\(\frac 35\) \(\implies\)cos x=\(\sqrt {1-(\frac 35)^2}\) = \(\frac 45\),
therefore tan x=\(\frac 34\) \(\implies\) x = tan-1 \(\frac 34\)
\(\implies\)sin-1\(\frac 35\) = tan-1 \(\frac 34\) ……...... (1)
Now let cos-1\(\frac {12}{13}\) = y. Then cos y=\(\frac {12}{13}\) \(\implies\)sin y=\(\frac {5}{13}\).
tan y = \(\frac 5{12}\) \(\implies\) y = tan-1\(\frac 5{12}\).
therefore cos-1 \(\frac {12}{13}\) = tan-1\(\frac 5{12}\) ………......(2)
Let sin-1\(\frac {56}{65}\) = z. Then sin z = \(\frac {56}{65}\). \(\implies\)cos z = \(\frac {33}{65}\).
tan z = \(\frac {56}{33}\) \(\implies\)z = tan-1\(\frac {56}{33}\).
so sin-1\(\frac {56}{33}\) = tan-1\(\frac {56}{33}\) ……..... (3)
Now, we have:
L.H.S.= cos-1\(\frac {12}{13}\)+sin-1\(\frac {3}{5}\)
= tan-1\(\frac 5{12}\) + tan-1\(\frac 34\) [using(1) and (2)]
= tan-1\(\frac {\frac {5}{12}+ \frac 34}{1- \frac {5}{12}. \frac 34}\)
= tan-1\(\frac {56}{33}\)
= sin-1\(\frac {56}{65}\)
= R.H.S