Prove: \(\frac {9\pi}{4} - \frac 94 sin^{-1}\frac 13 = \frac 94sin^{-1}\frac {2\sqrt 2}{3}\)
L.H.S = \(\frac {9\pi}8{}\) - \(\frac 94\)sin-1\(\frac 13\)
=\(\frac 94\)(\(\frac {\pi}{2}\) - sin-1\(\frac 13\))
=\(\frac 94\)(cos-1\(\frac 13\)) ……....(1) [sin-1x + cos-1x = \(\frac {\pi}{2}\)]
Now, let cos-1\(\frac 13\) = x. Then, cos x = \(\frac 13\) \(\implies\)sin x = \(\sqrt {1-(\frac 13)^2}\) = \(\frac {2\sqrt 2}{3}\).
Therefore x = sin-1\(\frac {2\sqrt 2}{3}\)
Therefore L.H.S = \(\frac 94\)sin-1\(\frac {2\sqrt 2}{3}\)
=R.H.S
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: