Question:

Prove: \(\frac {9\pi}{4} - \frac 94 sin^{-1}\frac 13 = \frac 94sin^{-1}\frac {2\sqrt 2}{3}\)

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

L.H.S = \(\frac {9\pi}8{}\) - \(\frac 94\)sin-1\(\frac 13\)
=\(\frac 94\)(\(\frac {\pi}{2}\) - sin-1\(\frac 13\)
=\(\frac 94\)(cos-1\(\frac 13\)) ……....(1)  [sin-1x + cos-1x = \(\frac {\pi}{2}\)
Now, let cos-1\(\frac 13\) = x. Then, cos x = \(\frac 13\) \(\implies\)sin x =  \(\sqrt {1-(\frac 13)^2}\)  = \(\frac {2\sqrt 2}{3}\)
Therefore x = sin-1\(\frac {2\sqrt 2}{3}\) 
Therefore L.H.S = \(\frac 94\)sin-1\(\frac {2\sqrt 2}{3}\)
                           =R.H.S

Was this answer helpful?
0
0