Prove \(2sin^{-1}\ \frac {3}{5}=tan^{-1}\ \frac {24}{7}\)
Let sin-1\(\frac 35\) = x. Then, sinx = \(\frac 35\)
\(\implies\)cosx = \(\sqrt {1- (\frac 35)^2}\) = \(\frac 45\),
therefore tanx = \(\frac 34\)
therefore x = tan-1\(\frac 34\)
\(\implies\)sin-1\(\frac 35\)=tan-1\(\frac 34\)
Now, we have:
LHS = 2sin-1\(\frac 35\)
= 2tan-1\(\frac 34\)
=tan-1\(\frac {2 \times \frac 34}{1-(\frac 34)^2}\) [2 tan-1x = tan-1\(\frac {2x}{1-x^2}\)]
= tan-1(\(\frac 32 \times \frac {16}{7}\))
= tan-1\(\frac {24}{7}\)
= RHS