Question:

Prove \(2sin^{-1}\ \frac {3}{5}=tan^{-1}\ \frac {24}{7}\)

Updated On: Mar 8, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let sin-1\(\frac 35\) = x. Then, sinx = \(\frac 35\) 
\(\implies\)cosx = \(\sqrt {1- (\frac 35)^2}\) = \(\frac 45\),
therefore tanx = \(\frac 34\)
therefore x = tan-1\(\frac 34\) 
\(\implies\)sin-1\(\frac 35\)=tan-1\(\frac 34\)
Now, we have: 
LHS = 2sin-1\(\frac 35\)
        = 2tan-1\(\frac 34\)
        =tan-1\(\frac {2 \times \frac 34}{1-(\frac 34)^2}\)     [2 tan-1x = tan-1\(\frac {2x}{1-x^2}\)
        = tan-1(\(\frac 32 \times \frac {16}{7}\)
        = tan-1\(\frac {24}{7}\) 
        = RHS

Was this answer helpful?
3
0