Step 1: Formula.
For each phase,
\[
\text{GHG emissions (kg CO$_2$ eq/f.u.)} = \big(\text{CO$_2$ emissions} + 23 \times \text{CH$_4$ emissions}\big) \times \text{Mass (tonne/f.u.)}
\]
Step 2: Product P calculations.
- Material Extraction: $(1.0 + 23 \times 0.75)\times 4 = (1.0+17.25)\times 4 = 18.25 \times 4 = 73.0$
- Production: $(1.5 + 23 \times 1.0)\times 2 = (1.5+23)\times 2 = 24.5 \times 2 = 49.0$
- Use: $(0.5+0)\times 1 = 0.5$
- End of Life: $(1.0 + 23 \times 0.25)\times 1 = (1.0+5.75)\times 1 = 6.75$
\[
\text{Total P} = 73.0 + 49.0 + 0.5 + 6.75 = 129.25 \, \text{kg CO$_2$ eq/f.u.}
\]
Step 3: Product Q calculations.
- Material Extraction: $(0.75+23\times 0.75)\times 3 = (0.75+17.25)\times 3 = 18.0 \times 3 = 54.0$
- Production: $(0.25+23\times 1.0)\times 2.5 = (0.25+23)\times 2.5 = 23.25 \times 2.5 = 58.125$
- Use: $(0+23\times 0.5)\times 0.75 = (11.5)\times 0.75 = 8.625$
- End of Life: $(2.0+0)\times 0.75 = 1.5$
\[
\text{Total Q} = 54.0 + 58.125 + 8.625 + 1.5 = 122.25 \, \text{kg CO$_2$ eq/f.u.}
\]
Step 4: Compare statements.
- (A): Material extraction → P = 73.0 vs Q = 54.0 → P is higher .
- (B): Production → P = 49.0 vs Q = 58.125 → Q is higher .
- (C): End of Life → P = 6.75 vs Q = 1.5 → P is higher . (So (C) is wrong).
Correction: Actually Q has lower than P, so statement (C) is FALSE.
- (D): Complete cycle → P = 129.25 vs Q = 122.25 → P is higher .
Step 5: Final Check.
Correct statements = (A), (B), (D).
Final Answer:
\[
\boxed{\text{(A), (B), (D)}}
\]