To find the principal value of \(\tan^{-1}(\sqrt{3}) + \tan^{-1}(1)\)
We begin by recognizing standard angle values:
- \(\tan^{-1}(1) = \dfrac{\pi}{4}\)
- \(\tan^{-1}(\sqrt{3}) = \dfrac{\pi}{3}\)
So:
\[
\tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \dfrac{\pi}{3} + \dfrac{\pi}{4} = \dfrac{4\pi + 3\pi}{12} = \dfrac{7\pi}{12}
\]
However, this is not in the principal value range of inverse tangent, which is \((-\dfrac{\pi}{2}, \dfrac{\pi}{2})\).
So instead, we apply the identity:
\[
\tan^{-1}(a) + \tan^{-1}(b) =
\begin{cases}
\tan^{-1}\left(\dfrac{a + b}{1 - ab}\right), & \text{if } ab < 1 \\
\pi + \tan^{-1}\left(\dfrac{a + b}{1 - ab}\right), & \text{if } ab > 1
\end{cases}
\]
With \(a = \sqrt{3}, b = 1\), we find:
\[
ab = \sqrt{3} > 1 \Rightarrow \text{Use the second case}
\]
So compute:
\[
\tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \pi + \tan^{-1}\left(\dfrac{\sqrt{3} + 1}{1 - \sqrt{3}}\right)
\]
Now simplify:
\[
\dfrac{\sqrt{3} + 1}{1 - \sqrt{3}} \cdot \dfrac{1 + \sqrt{3}}{1 + \sqrt{3}} = \dfrac{(\sqrt{3} + 1)(1 + \sqrt{3})}{1 - 3} = \dfrac{(4 + 2\sqrt{3})}{-2} = -2 - \sqrt{3}
\]
So we now get:
\[
\tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \pi + \tan^{-1}(-2 - \sqrt{3})
\]
Now, \(\tan^{-1}(-2 - \sqrt{3})\) is
negative, meaning it's in the 4th quadrant.
So:
\[
\pi + \tan^{-1}(-2 - \sqrt{3}) = \pi - \theta
\]
Where \(\theta = \tan^{-1}(2 + \sqrt{3}) \approx \frac{\pi}{12}\)
Thus:
\[
\pi - \frac{\pi}{12} = \frac{12\pi - \pi}{12} = \frac{11\pi}{12}
\]
But this is
not in the principal range \((-\dfrac{\pi}{2}, \dfrac{\pi}{2})\). Hence, the
principal value is:
\[
\boxed{-\frac{\pi}{12}}
\]