Let the digits be \(a\,b\,c\,d\,e\).
Given: \(a\) and \(e\) are prime; the even prime is in the 1\textsuperscript{st} place \(\Rightarrow a=2\).
The 3\textsuperscript{rd} digit is a cube digit \(\Rightarrow c\in\{0,1,8\}\).
Also \(c=a\cdot b \Rightarrow c=2b\).
Thus \(2b\in\{0,1,8\}\Rightarrow 2b\in\{0,8\}\Rightarrow b\in\{0,4\}\).
Case 1: \(b=0\). Then \(c=0\), \(d=a+b=2\), \(e=d/2=1\). But \(e\) must be prime; \(1\) is not prime \(\Rightarrow\) reject.
Case 2: \(b=4\). Then \(c=2\times4=8\) (a cube digit ✓).
Next \(d=a+b=2+4=6\).
Finally \(e=d/2=3\) which is prime ✓.
Therefore the PIN is \(a\,b\,c\,d\,e=2\,4\,8\,6\,3\).
\(\boxed{24863}\)