Question:

Potential \( V = \frac{1}{2}(y^2 - 4x) \). Electric field at \( x = 1 \, \text{m}, y = 1 \, \text{m} \) is:

Show Hint

Electric field is negative gradient of potential: \( \vec{E} = -\nabla V \)
Updated On: May 13, 2025
  • \( 2\hat{i} + \hat{j} \, \text{Vm}^{-1} \)
  • \( -2\hat{i} + \hat{j} \, \text{Vm}^{-1} \)
  • \( 2\hat{i} - \hat{j} \, \text{Vm}^{-1} \)
  • \( -2\hat{i} + 2\hat{j} \, \text{Vm}^{-1} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\[ V = \frac{1}{2}(y^2 - 4x) \Rightarrow E_x = -\frac{\partial V}{\partial x} = 2, \quad E_y = -\frac{\partial V}{\partial y} = -y = -1 \Rightarrow \vec{E} = 2\hat{i} - \hat{j} \, \text{Vm}^{-1} \]
Was this answer helpful?
0
0

Top Questions on Electrostatics

View More Questions