Step 1 (Statement I): \(1000027=10^6+27\). Check factors:
\[
1000027=7\times 142861, \; 142861=103\times 1387, \; 1387=19\times 73.
\]
Hence \(1000027=7\cdot 103\cdot 19\cdot 73\). So I is false.
Step 2 (Statement II): Compare \(\sqrt[6]{6!}\) and \(\sqrt[7]{7!}\). The claim \(\sqrt[6]{6!}\ge \sqrt[7]{7!}\) is equivalent to
\[
(6!)^7 \ge (7!)^6=(7\cdot 6!)^6=7^6(6!)^6 \;\Longleftrightarrow\; 6! \ge 7^6,
\]
but \(6!=720 < 7^6=117{,}649\). Hence \(\sqrt[6]{6!}<\sqrt[7]{7!}\); II is false.
Step 3 (Statement III): Let total distance be \(D\). If the first half \(D/2\) is done at speed \(x\), time used is \(\tfrac{D}{2x}\). To average \(2x\) over the whole trip, total time must be \(\tfrac{D}{2x}\). This leaves zero time for the remaining half—impossible unless the remaining speed is infinite. So III is true.
Conclusion: Only Statement III holds.