Step 1: Rate of work of P
P types 20 pages in 3 hours.
So, P’s typing rate = \( \frac{20}{3} \) pages per hour.
Step 2: Rate of work of Q
Q types 25 pages in 4 hours.
So, Q’s typing rate = \( \frac{25}{4} \) pages per hour.
Step 3: Combined rate of P and Q
\[
\text{P’s rate} + \text{Q’s rate} = \frac{20}{3} + \frac{25}{4}
\]
Take LCM of 3 and 4 = 12:
\[
\frac{80}{12} + \frac{75}{12} = \frac{155}{12}
\]
So, together they type \( \frac{155}{12} \) pages per hour.
Step 4: Time required for 620 pages
\[
\text{Time} = \frac{\text{Total pages}}{\text{Combined rate}}
= \frac{620}{\tfrac{155}{12}}
= 620 \times \frac{12}{155}
\]
Simplify: \( 620 \div 155 = 4 \).
\[
= 4 \times 12 = 48 \, \text{hours}
\]
\[
\boxed{48 \, \text{hours}}
\]