Step 1: Using \(q=9p\) in \(p^{q}=q^{p}\), we get
\[
p^{9p}=(9p)^{p}=9^{p}p^{p}.
\]
Divide both sides by \(p^{p}\,(>0)\):
\[
p^{8p}=9^{p}.
\]
Step 2: Take the \(p\)-th root (or take logs) to obtain
\[
p^{8}=9 \; \Rightarrow \; p=9^{1/8}=\sqrt[8]{9}.
\]
Thus, the required value is \(\boxed{\sqrt[8]{9}}\).