The change in entropy is given by:
\[ \Delta S = n C_V \ln \frac{T_2}{T_1} \]
Substituting \( n = 1 \), \( C_V = \frac{3}{2} R \), \( T_1 = 273K \), and \( T_2 = 303K \):
\[ \Delta S_1 = \frac{3}{2} R \ln \frac{303}{273} \]
\[ \Delta S_1 \approx \frac{3}{2} R \ln(1.111) \]
\[ \Delta S_1 \approx \frac{3}{2} R \times 0.1054 \]
\[ \Delta S_1 \approx 0.1581 R \]
Similarly, for the second temperature change:
\[ \Delta S_2 = \frac{3}{2} R \ln \frac{T_3}{T_2} \]
Substituting \( T_2 = 303K \) and \( T_3 = 373K \):
\[ \Delta S_2 = \frac{3}{2} R \ln \frac{373}{303} \]
\[ \Delta S_2 \approx \frac{3}{2} R \ln(1.231) \]
\[ \Delta S_2 \approx \frac{3}{2} R \times 0.2078 \]
\[ \Delta S_2 \approx 0.3117 R \]
The total entropy change is the sum of \( \Delta S_1 \) and \( \Delta S_2 \):
\[ \Delta S = \Delta S_1 + \Delta S_2 \]
\[ \Delta S = 0.1581 R + 0.3117 R \]
\[ \Delta S \approx 0.4498 R \]
The net change in entropy is approximately \( 0.44 R \).
The P-V diagram of an engine is shown in the figure below. The temperatures at points 1, 2, 3 and 4 are T1, T2, T3 and T4, respectively. 1→2 and 3→4 are adiabatic processes, and 2→3 and 4→1 are isochoric processes
Identify the correct statement(s).
[γ is the ratio of specific heats Cp (at constant P) and Cv (at constant V)]