The change in entropy is given by:
\[ \Delta S = n C_V \ln \frac{T_2}{T_1} \]
Substituting \( n = 1 \), \( C_V = \frac{3}{2} R \), \( T_1 = 273K \), and \( T_2 = 303K \):
\[ \Delta S_1 = \frac{3}{2} R \ln \frac{303}{273} \]
\[ \Delta S_1 \approx \frac{3}{2} R \ln(1.111) \]
\[ \Delta S_1 \approx \frac{3}{2} R \times 0.1054 \]
\[ \Delta S_1 \approx 0.1581 R \]
Similarly, for the second temperature change:
\[ \Delta S_2 = \frac{3}{2} R \ln \frac{T_3}{T_2} \]
Substituting \( T_2 = 303K \) and \( T_3 = 373K \):
\[ \Delta S_2 = \frac{3}{2} R \ln \frac{373}{303} \]
\[ \Delta S_2 \approx \frac{3}{2} R \ln(1.231) \]
\[ \Delta S_2 \approx \frac{3}{2} R \times 0.2078 \]
\[ \Delta S_2 \approx 0.3117 R \]
The total entropy change is the sum of \( \Delta S_1 \) and \( \Delta S_2 \):
\[ \Delta S = \Delta S_1 + \Delta S_2 \]
\[ \Delta S = 0.1581 R + 0.3117 R \]
\[ \Delta S \approx 0.4498 R \]
The net change in entropy is approximately \( 0.44 R \).
At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)