Step 1: Recall relationships
For an ideal gas: $$C_P - C_V = R$$ $$\gamma = \frac{C_P}{C_V}$$
From these: $$C_V = \frac{R}{\gamma - 1}$$ $$C_P = \frac{\gamma R}{\gamma - 1}$$
Step 2: Calculate for each gas
For Gas 1 ($\gamma_1 = 1.6$): $$C_{V,1} = \frac{R}{1.6 - 1} = \frac{R}{0.6} = \frac{5R}{3}$$ $$C_{P,1} = \frac{1.6R}{0.6} = \frac{8R}{3}$$
For Gas 2 ($\gamma_2 = 1.4$): $$C_{V,2} = \frac{R}{1.4 - 1} = \frac{R}{0.4} = \frac{5R}{2}$$ $$C_{P,2} = \frac{1.4R}{0.4} = \frac{7R}{2}$$
Step 3: Calculate mixture properties
For a mixture of ideal gases, the total heat capacity is the sum (since we have 1 mole of each):
$$C_V = \frac{n_1 C_{V,1} + n_2 C_{V,2}}{n_1 + n_2} = \frac{1 \cdot \frac{5R}{3} + 1 \cdot \frac{5R}{2}}{2}$$
$$= \frac{1}{2}\left(\frac{5R}{3} + \frac{5R}{2}\right) = \frac{1}{2}\left(\frac{10R + 15R}{6}\right) = \frac{25R}{12}$$
$$C_V = 2.083R \approx 2.08R$$
$$C_P = \frac{n_1 C_{P,1} + n_2 C_{P,2}}{n_1 + n_2} = \frac{1 \cdot \frac{8R}{3} + 1 \cdot \frac{7R}{2}}{2}$$
$$= \frac{1}{2}\left(\frac{8R}{3} + \frac{7R}{2}\right) = \frac{1}{2}\left(\frac{16R + 21R}{6}\right) = \frac{37R}{12}$$
$$C_P = 3.083R$$
Step 4: Check the ratios
$$\frac{C_P}{C_V} = \frac{37R/12}{25R/12} = \frac{37}{25} = 1.48$$
So: $C_P = 1.48 C_V$
Answer: (A) and (C) are correct

