Step 1: Read the coordinates of points $A$ and $B$ from the $P$–$V$ diagram:
\[
A(V_0,\,3P_0), \qquad B(5V_0,\,6P_0)
\]
For one mole of ideal gas,
\[
T=\frac{PV}{R}
\]
Step 2: Temperatures at $A$ and $B$:
\[
T_A=\frac{3P_0V_0}{R}, \qquad
T_B=\frac{6P_0\cdot 5V_0}{R}=\frac{30P_0V_0}{R}
\]
\[
\Delta T=T_B-T_A=\frac{27P_0V_0}{R}
\]
Step 3: Work done in the process $A\to B$.
Since the path is a straight line,
\[
W=\text{average pressure}\times \Delta V
\]
\[
W=\frac{3P_0+6P_0}{2}\,(5V_0-V_0)
=\frac{9P_0}{2}\cdot 4V_0
=18P_0V_0
\]
Step 4: Change in internal energy for a monoatomic ideal gas:
\[
\Delta U=\frac{3}{2}R\Delta T
=\frac{3}{2}R\cdot\frac{27P_0V_0}{R}
=\frac{81}{2}P_0V_0
\]
Step 5: Heat supplied using the first law of thermodynamics:
\[
\Delta Q=\Delta U+W
=\frac{81}{2}P_0V_0+18P_0V_0
=\frac{117}{2}P_0V_0
\]
Step 6: Specific heat capacity of the process:
\[
C=\frac{\Delta Q}{\Delta T}
=\frac{\frac{117}{2}P_0V_0}{\frac{27P_0V_0}{R}}
=\frac{117}{54}R
=\frac{13R}{6}
\]